Bulus, M. & Dong, N. (2021). cosa: Bound Constrained Optimal Sample Size Allocation. R package version 2.1.0.

      • Implements bound constrained optimal sample size allocation (BCOSSA) framework described in Bulus & Dong (2021) <doi:10.1080/00220973.2019.1636197> for power analysis of multilevel regression discontinuity designs (MRDDs) and multilevel randomized trials (MRTs) with continuous outcomes. Minimum detectable effect size (MDES) and power computations for MRDDs allow polynomial functional form specification for the score variable (with or without interaction with the treatment indicator). See Bulus (2021) <doi:10.1080/19345747.2021.1947425>.

Bulus, M., Dong, N., Kelcey, B., & Spybrook, J. (2021). PowerUpR: Power Analysis Tools for Multilevel Randomized Experiments. R package version 1.1.0.

      • Includes tools to calculate statistical power, minimum detectable effect size (MDES), MDES difference (MDESD), and minimum required sample size for various multilevel randomized experiments (MRE) with continuous outcomes. Accomodates 14 types of MRE designs to detect main treatment effect, seven types of MRE designs to detect moderated treatment effect (2-1-1, 2-1-2, 2-2-1, 2-2-2, 3-3-1, 3-3-2, and 3-3-3 designs; <total.lev> - <trt.lev> - <mod.lev>), five types of MRE designs to detect mediated treatment effects (2-1-1, 2-2-1, 3-1-1, 3-2-1, and 3-3-1 designs; <trt.lev> - <med.lev> - <out.lev>), four types of partially nested (PN) design to detect main treatment effect, and three types of PN designs to detect mediated treatment effects (2/1, 3/1, 3/2; <trt.arm.lev> / <ctrl.arm.lev>). See 'PowerUp!' Excel series at <>.

Bulus, M. & Bonifay, W. (2018). irtDemo: Item Response Theory Demo Collection. R package version 0.1.4.

      • Includes a collection of shiny applications to demonstrate or to explore fundamental item response theory (IRT) concepts such as estimation, scoring, and multidimensional IRT models.